Extrusion and Injection Molding - Analysis

ver. 1
Overview

• Extrusion and Injection molding
 – Flow in screw
 – Flow in cavity or die

• Injection molding
 – Clamp force
 – Cooling time
 – Ejection force
Extrusion schematic

- Hopper
- Thrust bearing
- Gear reducer box
- Motor
- Screw
- Throat liner
- Barrel heater/cooler
- Thermocouples
- Throat-cooling channel
- Feed zone
- Melting zone
- Melt-pumping zone
- Filter screen
- Breaker plate
- Melt thermocouple
- Adapter
- Die
Injection molding schematic
Flow in screw - Extrusion and Injection molding

- Understood through simple fluid analysis
- Unroll barrel from screw
 - rectangular trough and lid

\[v = \pi DN \]

\[v_x \]

\[v_z \]

\[H \]

\[w/\cos\theta \]

w is like normal pitch
w/\cos\theta is like axial pitch
Flow analysis

- Barrel slides across channel at the helix angle
- \(v_z = \) pumping
- \(v_x = \) stirring

\[
v = \pi DN
\]

\(w/\cos\theta \) is like normal pitch
\(w/\cos\theta \) is like axial pitch
Flow rate

• v_z shows viscous traction work against exit pressure

flow rate = f(exit pressure, v_{barrel}, μ, d, w, l)
Flow analysis

• Simplify by using Newtonian fluid

• Separate into drag and pressure flows

• Add solutions (superposition)
Drag flow in rectangular channel \((Q_D) \)

- Simple viscous flow between parallel plates, end effects negligible

\[
v = v_0 \frac{y}{H}
\]

\[
Q_D = v \cdot A = v_0 \cdot \frac{1}{2} \cdot wH
\]
Pressure flow in rectangular channel

- Assumptions
 - no slip at walls
 - melt is incompressible
 - steady, laminar flow
 - end and side wall effects are negligible
Pressure flow in rectangular channel

Equilibrium

\[
\left(p - \left(p + dp\right)\right) \cdot 2y - 2\tau \cdot dz = 0
\]
Pressure flow in rectangular channel

\[(p - (p + dp)) \cdot 2y - 2\tau \cdot dz = 0\]

\[\tau = -y \cdot \frac{dp}{dz}\]

Newtonian fluid

\[\tau = \mu \cdot \dot{\gamma} = \mu \cdot \frac{dv}{dy}\]
Pressure flow in rectangular channel

- Eliminating τ

$$ dv = \frac{-1}{\mu} \cdot \frac{dp}{dz} \cdot y \cdot dy $$

- Integrating and noting

$@ y = +/- H/2, \; v = 0$

$$ v = \frac{1}{\mu} \cdot \frac{dp}{dz} \cdot \left[\frac{H^2}{8} - \frac{y^2}{2} \right] $$
Total pressure flow (Q_p)

\[
Q_p = w \int_{-H/2}^{H/2} v \cdot dy = \frac{wH^3}{12 \mu} \frac{dp}{dz}
\]
Total flow (Q)

$$Q = Q_D - Q_p = w \cdot \left[\frac{v_z H}{2} - \frac{H^3}{12 \mu} \cdot \frac{dp}{dz} \right]$$

- dp/dz set by
 - back pressure on reciprocating screw (injection molding)
 - die resistance (extrusion)
Nomenclature

• $dz = \text{helical length} = \frac{\text{axial length}}{\sin \theta}$
• $v_z = \text{helix velocity} = v_{\text{barrel}} \cdot \cos \theta$
Flow rate

output pressure

flow rate

1. ω
2. 2ω
Flow in round die or runner

Same assumptions as above

Equilibrium

\[
\pi \cdot \left[(r + dr)^2 - r^2 \right] \cdot dp = 2\pi \cdot \left[(r + dr)(\tau + d\tau) - r\tau \right] \cdot dz
\]
Flow in round die or runner

\[\pi \cdot [(r + dr)^2 - r^2] \cdot dp = 2\pi \cdot [(r + dr) \cdot (\tau + d\tau) - r\tau] \cdot dz \]

Neglecting HOT

\[2\pi r \cdot dr \cdot dp = 2\pi \cdot (\tau \cdot dr + r \cdot d\tau) \cdot dz \]

\[\frac{dp}{dz} = \frac{\tau \cdot dr + r \cdot d\tau}{r \cdot dr} = \frac{d(\tau r)}{r \cdot dr} \]
Flow in round die or runner

\[
\frac{dp}{dz} = \frac{\Delta p}{L} = C = \frac{d(\tau r)}{r \cdot dr}
\]

\[
d(\tau r) = C r \cdot dr
\]

\[
\int d(\tau r) = \int C r \cdot dr
\]
Flow in round die or runner

\[\tau r = C \frac{r^2}{2} \]

\[\tau = \frac{C}{2} r = \frac{\Delta p}{2L} r \]
Flow in round die or runner

- At center, $\tau = 0$
- At edge of tube (R), $\tau = \max$

\[
\tau_{\text{max}} = \frac{\Delta p \cdot R}{2L}
\]

Newtonian fluid

\[
\tau = \mu \frac{du}{dr}
\]
Flow in round die or runner

\[\dot{\gamma} = \frac{du}{dr} = \frac{\Delta p \cdot r}{2L\mu} \]

finally

\[u = \frac{\Delta p}{4\mu L} \left(r^2 - R^2 \right) \]
Flow in round die or runner

\[u = \frac{\Delta p}{4\mu L} \left(r^2 - R^2 \right) \]

\[Q_p = \int_0^R 2\pi r \cdot u \cdot dr = \frac{\pi \cdot R^4}{8\mu} \cdot \frac{\Delta p}{L} \]
Flow in rectangular die or runner

• as above

\[Q_p = \frac{wH^3}{12\mu} \cdot \frac{\Delta p}{L} \]
Extrusion

• Pressure generated by screw rotation
 – flow rate through screw = flow rate through die
 \[Q(\text{extruder}) = Q(\text{die}) \]
 – pressure rise in screw = pressure drop in die
 \[dp(\text{extruder}) = \Delta p(\text{die}) \]
Extrusion - Ex. 1-1

• Extrude a polymer through a die with dimensions diameter 5 mm, length 40 mm at rate 10 cm/s

• Screw is fixed, barrel rotates

• More data on next page

• Calculate barrel RPM
Extrusion - Ex. 1-2

- polymer density (ρ) = 980 kg/m3
- polymer viscosity (μ) = 10^3 N-s/m2
- barrel diameter (D) = 28 mm
- channel width (w) = 21 mm
- channel height (H) = 4 mm
- helix angle (θ) = 15 degrees
- length of screw (L) = 1.25 m
Extrusion - Ex. 1-3

• First, calculate flow rate

\[Q_{\text{product}} = v \cdot A = 0.1 \times \frac{\pi (0.005)^2}{4} = 1.96 \times 10^{-6} \, m^3 / s \]

\[Q_{\text{screw}} = w \cdot \left[\frac{v_z H}{2} - \frac{H^3}{12 \mu} \cdot \frac{dp}{dz} \right] \]

\[Q_{\text{die}} = \frac{\pi R^4}{8 \mu} \frac{\Delta p}{L} \quad \text{with} \quad dp = \Delta p \]
Extrusion - Ex. 1-4

• Substituting, equating, solving

\[Q_{product} = Q_{die} \]

\[\frac{\pi \left(\frac{0.005}{2} \right)^4}{8 \times 10^3} \frac{\Delta p}{0.04} = 1.96 \times 10^{-6} \]

\[\Delta p = 5.1 \text{ MPa} \]
Extrusion - Ex. 1-5

• Substituting, equating using Δp, solving

$$Q_{\text{product}} = Q_{\text{screw}}$$

$$1.96 \times 10^{-6} = 0.021 \left[\frac{v_z \times 0.004}{2} - \frac{(0.004)^3}{12 \times 10^3} \frac{5.1 \times 10^6}{4.83} \right]$$

$$dz = \frac{l}{\sin \theta} = \frac{1.25}{\sin 15} = 4.83m$$

solving

$$v_z = 49.5 \text{ mm/s}$$
Extrusion - Ex. 1-6

• Solving for RPM

\[v_{\text{barrel}} = \frac{v_z}{\cos \theta} = \frac{49.5}{\cos 15} = 51.2 \, \text{mm/s} \]

\[N = \frac{60 \times v_{\text{barrel}}}{\pi \times D} = \frac{60 \times 51.2}{\pi \times 28} = 35 \, \text{RPM} \]
Injection molding cycle

1. To make a shot: use screw (extruder) equation for flow rate \((Q)\) to produce a shot volume \((\text{vol} = Q\cdot t)\).
 - back pressure gives \(dp\) term
 - time \((t)\) bounded by cycle time (upper) and degradation of material (lower)
2. To inject the plastic: use pressure flow equations and injection pressure (Δp) or injection time (t) and volume to be filled (shot volume) to determine flow rate (Q) and hence time (t) or injection pressure (Δp) required to fill mold

- injection time (t) will be limited by freezing of plastic and degradation of material
Injection Molding - Ex. 2-1

• Injection mold a polymer in a steel tool
• Model the sprue, runner and part as a cylinder of diameter 10 mm, length 150 mm
• Determine the screw RPM to make a shot in less than 3 seconds (screw rotates)
• Determine the injection pressure to make the part in 2 seconds
Injection Molding - Ex. 2-2

- polymer density (ρ) = 980 kg/m3
- polymer viscosity (μ) = 10^3 N-s/m2
- barrel diameter (D) = 28 mm
- channel width (w) = 21 mm
- channel height (H) = 4 mm
- helix angle (θ) = 15 degrees
- length of screw (L) = 1.25 m
Injection Molding - Ex. 2-3

- Screw RPM calculation
- Back pressure = 15 MPa
- Assume 3 seconds to make shot
- Calculate Q

\[
Q = \frac{vol}{time} = \frac{\pi r^2 l}{time} = \frac{\pi \cdot (5)^2 \cdot (150)}{3} = 3,927 \, mm^3 / s
\]
Injection Molding - Ex. 2-4

• Screw RPM calculation

\[Q_{screw} = w \cdot \left[\frac{v_z H}{2} - \frac{H^3}{12 \mu} \cdot \frac{dp}{dz} \right] \]

\[v_z = v_{screw} \cos \theta \]

\[dz = \frac{l}{\sin \theta} \]

\[v_{screw} = \frac{\pi DN}{60} \]

\[D = 28 - 2 \times 4 = 20 \text{mm} \]

\[D = \text{barrel diameter} - 2 \times \text{channel height} \]
Injection Molding - Ex. 2-5

• Substituting values, solving

\[3,927 = 21 \cdot \left[\frac{\pi \times 20 \times \frac{N}{60} \times \cos 15 \times 4}{2} - \frac{4^3}{12 \times 10^3} \cdot \frac{15 \times 10^6}{\sin 15} \right] \]

\[N = 101 \text{ RPM} \]
Injection Molding - Ex. 2-6

- Injection pressure calculation
- Part injection is pressure driven

\[
Q = \frac{vol}{time} = \frac{\pi (5)^2 (150)}{2} = 5,891 \text{mm}^3 / s
\]

\[
Q_{\text{mold}} = \frac{\pi R^4 \Delta p}{8 \mu L}
\]
Injection Molding - Ex. 2-7

• Substituting, equating, solving

\[5,891 = \frac{\pi \times (5)^4}{8 \times 10^3} \frac{\Delta p}{150} \]

\[\Delta p = 3.6 \text{ MPa} = 522 \text{ psi} \]
Power law viscosity

$$\mu(\dot{\gamma}) = k \cdot \dot{\gamma}^{n-1}$$

$$\tau = \mu \cdot \dot{\gamma} = k \cdot \dot{\gamma}^n$$

k, n are consistency and power law index
Non-Newtonian, pressure driven flow in rectangular channel

- NB: drag flow analysis is similar to the following

\[
v = v_0 \cdot \left[1 - \left(\frac{2y}{H}\right)^n\right]
\]

\[
Q = 2wv_0 \cdot \int_0^\frac{H}{2} \left[1 - \left(\frac{2y}{H}\right)^n\right] dy
\]
Non-Newtonian, pressure driven flow in rectangular channel

\[Q = w \cdot \left(\frac{\Delta p}{k \cdot L} \right)^{\frac{1}{n}} \cdot \frac{2n}{2n + 1} \left(\frac{H}{2} \right)^{\frac{2n+1}{n}} \]

\[v_{ave} = \frac{Q}{wH} = \left(\frac{\Delta p}{k \cdot L} \right)^{\frac{1}{n}} \cdot \frac{n}{2n + 1} \cdot \left(\frac{H}{2} \right)^{\frac{n+1}{n}} \]
Non-Newtonian, pressure driven flow in round channel

\[u = \frac{n}{n+1} \cdot \left(\frac{\Delta p}{2k \cdot L} \right)^\frac{1}{n} \cdot R^n \cdot \frac{n+1}{n} \cdot \left[1 - \left(\frac{r}{R} \right)^\frac{n+1}{n} \right] \]

\[Q = \pi \cdot \frac{n}{3n+1} \cdot \left(\frac{\Delta p}{2k \cdot L} \right)^\frac{1}{n} \cdot R^n \cdot \frac{3n+1}{n} \]

\[v_{ave} = \frac{Q}{\pi \cdot R^2} = \frac{n}{3n+1} \cdot \left(\frac{\Delta p}{2k \cdot L} \right)^\frac{1}{n} \cdot R^n \cdot \frac{n+1}{n} \]
Example – 3-1

• Compare Newtonian and Non-Newtonian, pressure driven fluid flow in a rectangular channel

• Given
 – $H = 2 \text{ mm}$, $w = 15 \text{ mm}$, $L = 50 \text{ mm}$
 – $Q = 60 \text{ cm}^3/\text{s} = 6 \times 10^{-5} \text{ m}^3/\text{s}$
 – $\mu = 100 \text{ Pa-s} @ d\gamma/dt = 3000/\text{s}$ (Newtonian viscosity)
 • $k = 12198$, $n = 0.4$
Example – 3-2

First, determine the Newtonian flow properties

\[v_{ave} = \frac{Q}{wH} = \frac{6 \times 10^{-5}}{0.015 \cdot 0.002} = 2 \frac{m}{s} \]

\[\Delta p = \frac{12 \mu LQ}{wH^3} = \frac{12 \cdot 100 \cdot 0.05 \cdot 6 \times 10^{-5}}{0.015 \cdot (0.002)^3} = 30 \text{ MPa} \]
Example – 3-3

\[v = \frac{1}{\mu} \cdot \frac{\Delta p}{L} \cdot \left[\frac{H^2}{8} - \frac{y^2}{2} \right] \]

\[v_{\text{max}} = v \bigg|_{y=0} = \frac{\Delta p \cdot H^2}{8 \mu L} = \frac{30 \times 10^6 \cdot (0.002)^2}{8 \cdot 100 \cdot 0.05} = 3 \frac{m}{s} \]

(max at y=0 because this gives the greatest value)
Example – 3-4

• For non-Newtonian flow, determine the Δp needed for $Q = 6 \times 10^{-5} \text{ m}^3/\text{s}$ and $v_{\text{ave}} = 2 \text{ m/s}$.

\[
v_{\text{ave}} = \frac{Q}{wH} = \left(\frac{\Delta p}{k \cdot L} \right)^{\frac{1}{n}} \cdot \frac{n}{2n+1} \cdot \left(\frac{H}{2} \right)^{\frac{n+1}{n}}
\]

\[
2 \frac{m}{s} = \left(\frac{\Delta p}{12198 \cdot 0.05} \right)^{\frac{1}{0.4}} \cdot \frac{0.4}{2 \cdot 0.4 + 1} \cdot \left(\frac{0.002}{2} \right)^{\frac{0.4+1}{0.4}}
\]
Example – 3-5

solving

\[\Delta p = 23.3 \text{ MPa} \]

and

\[\frac{\Delta p_{\text{non-Newtonian}}}{\Delta p_{\text{Newtonian}}} = \frac{23.3}{30} \approx 0.78 \]
Example – 3-6

• For non-Newtonian flow, determine Q for $\Delta p = 30$ MPa.

\[
v_{ave} = \left(\frac{30 \times 10^6}{12198 \cdot 0.05} \right)^{\frac{1}{0.4}} \cdot \frac{0.4}{2 \cdot 0.4 + 1} \cdot \left(\frac{0.002}{2} \right)^{\frac{0.4+1}{0.4}} = 3.77 \frac{m}{s}
\]

\[
Q = v_{ave} \cdot w \cdot H = 3.77 \cdot 0.015 \cdot 0.002 = 11.3 \times 10^{-5} \frac{m^3}{s}
\]

\[
\frac{Q_{non-Newtonian}}{Q_{Newtonian}} = \frac{11.3 \times 10^{-5}}{6 \times 10^{-5}} = 1.88
\]
Example – 3-7

- One can see the effect of shear-thinning
 - reduction in pressure needed to maintain a flow
 - increase in flow with a constant pressure
Clamp force

• Typically 50 tons/oz of injected material
• Can be approximated by
 – injection pressure x projected area of part at parting line
Cooling in a mold

• Assume 1-D heat conduction
• Assume mold conducts much better than plastic (Biot > 1)
• Center temperature important

\[\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2} \]

T = temperature
t = time
\(\alpha = \frac{k}{\rho c} \)}
Cooling in a mold

\[Fo = \frac{\alpha t}{x^2} \quad Bi = \frac{hx}{k} \quad \xi = \frac{x}{l} \]

\[\Theta = \frac{T_E - T_W}{T_M - T_W} \]

\[\Theta = ejection \ temp \]
\[T_M = injection \ temp \]
\[T_W = mold \ wall \ temp \]
\[2l = thickness \ of \ part \]

\[\frac{\partial^2 \Theta}{\partial \xi^2} = \frac{\partial \Theta}{\partial Fo} \]
Cooling in a mold

- Solution
 - must be approximated or solved numerically

\[
\Theta(\xi, Fo) = \frac{4}{\pi} \sum_{n, \text{odd}}^{\infty} \left[\frac{1}{n} \exp\left(-\left(\frac{n\pi}{2} \right)^2 Fo \right) \right] \sin\left(\frac{n\pi}{2} \xi \right)
\]
Minimum cooling time - t_c

Approximation for time taken (t_c) for center of flat sheet (thickness, $2l$) to reach ejection temperature (T_E)

$$t_c = \frac{4l^2}{\pi^2 \alpha} \cdot \ln \left| \frac{4}{\pi} \cdot \left(\frac{T_M - T_W}{T_E - T_W} \right) \right|$$
Minimum cooling time - Ex. 4-1

- $\alpha =$ thermal diffusivity $\sim 10^{-7}$ m2/s
- $2l =$ plate thickness $\sim 3 \times 10^{-3}$ m
- $T_W =$ mold wall temperature $\sim 50^\circ$C
- $T_M =$ melt temperature $\sim 250^\circ$C
- $T_E =$ ejection temperature $\sim 100^\circ$C
- Minimum cooling time for the center line to reach T_E
 - $t_c \sim 15$ sec.
Minimum cooling time - t_c

- Approximation for cylinder (radius = r), solved similarly to the plate

\[
Fo = \frac{\alpha t}{r^2}
\]

\[
t_c = \frac{1.7r^2}{\pi^2\alpha} \cdot \ln\left|1.7 \cdot \left(\frac{T_M - T_W}{T_E - T_W}\right)\right|
\]
Non-isothermal flow

- Flow rate characteristic time constant:
 \[\tau = \frac{1}{t} \sim \frac{V}{L_x} \]

- Heat transfer rate characteristic time constant:
 \[\tau = \frac{1}{t} \sim \frac{\alpha}{L_z^2} \]

\[
\frac{\text{Flowrate}}{\text{Heat transferrate}} \sim \frac{V \cdot L_z^2}{\alpha \cdot L_x} = \frac{V \cdot L_z}{\alpha} \cdot \frac{L_z}{L_x}
\]

- Small numbers give short shots
 - thick runners needed
 - ratio should be greater than one for filling
Non-isothermal flow

\[
\text{Flowrate} \sim \frac{0.01 \text{m/s} \times 0.0015 \text{m}}{10^{-7} \text{m}^2 / \text{s}} \times \frac{0.0015 \text{m}}{0.1 \text{m}} \approx 2.25
\]

So, the mold should fill.
Limits on ejection temperature

- Plastic must be cool enough to withstand ejection force from ejection pins without breaking
- Plastic must be cool enough so that upon further cooling will not warp
Ejection force

- Ejection pins force the part out of the mold after the part has cooled and solidified enough.
- The part will shrink onto any cores, leading to an interference fit.
- Model as a thin walled cylinder with closed ends (plastic part) on a rigid core (metal mold).
Thin-walled cylinder with closed ends

\[\sigma_t = \frac{pd}{2t} = \sigma_1 \]

\[\sigma_a = \frac{pd}{4t} = \sigma_2 \]

\[\sigma_r = 0 = \sigma_3 \]
Biaxial strain

\[\varepsilon_1 = \frac{\sigma_1}{E} - \frac{\nu \sigma_2}{E} = \frac{pd}{2tE} - \frac{pd}{4tE} \]

\[\varepsilon_1 = \frac{p}{E} \cdot \left(\frac{d}{2t} - \frac{d}{4t} \nu \right) \]

\[\varepsilon_1 = \alpha \cdot \Delta T \]
Ejection force

\[p = \frac{E \cdot \alpha \cdot \Delta T}{\left(\frac{d}{2t} - \frac{d}{4t} v \right)} \]

\[F_{ejection} = \mu \cdot p \cdot A \]

\[F_{ejection} = \frac{\mu \cdot E \cdot A \cdot \alpha \cdot \Delta T}{\left(\frac{d}{2t} - \frac{d}{4t} v \right)} \]
Nomenclature

- $A = \text{area}$
- $d = \text{core diameter}$
- $E = \text{Young's modulus}$
- $p = \text{pressure}$
- $t = \text{part thickness}$

- $\alpha = \text{thermal expansion coefficient}$
- $\Delta T = \text{temperature differential}$
- $\nu = \text{Poisson's ratio}$
- $\mu = \text{friction coefficient}$
Summary

• Extrusion and Injection molding
 – Flow in screw
 – Flow in cavity or die

• Injection molding
 – Clamp force
 – Cooling time
 – Ejection force